INFORMATION SHEET Waste Discharge Requirements Order No. R5-2010-XXXX Foster Poultry Farms Ellenwood Chicken Hatchery Stanislaus County #### INTRODUCTION Foster Poultry Farms Ellenwood Chicken Hatchery has applied for Waste Discharge Requirements (WDRs) for a hatchery expansion. The hatchery is located at 1307 Ellenwood Road, Waterford in Stanislaus County. Foster Poultry Farms currently hatches and ships approximately 2.1 million chicks per week. Approximately 800,000 hatched chicks per week are imported from the Foster Poultry Farms Albers Hatchery. Foster Poultry Farms intends to expand the hatchery so that they will hatch and ship approximately 3.2 to 3.3 million chicks per week. All chicks are transported to grow-out ranches within hours of hatching. No animal feeding or handling of manure from live animals is conducted at the facility. A Report of Waste Discharge dated 21 September 2009 was submitted for the expansion of the hatchery. The Central Valley Regional Water Quality Control Board (Central Valley Water Board) requires all Confined Animal Facility projects to have gone through the California Environmental Quality Act (CEQA) prior to issuing WDRs. The Stanislaus County Planning and Community Development Department was the lead agency for purposes of CEQA. An An Initial Study and Mitigated Negative Declaration for this project were released for public comment on 2 February 2010. Stanislaus County Planning and Community Development approved the final Mitigated Negative Declaration and the Conditional Use Permit #2009-16 on 1 April 2010. The Central Valley Water Board is a responsible agency for purposes of CEQA. The Central Valley Water Board reviewed and considered the environmental effects of the project identified in the Initial Study and Mitigated Negative Declaration. The Mitigated Negative Declaration identified a single mitigation measure for the Hydrology and Water Quality section. The mitigation measure required the Discharger to obtain WDRs from the Central Valley Water Board, should they be required. #### **CURRENT CONDITIONS** The hatchery has been in operation since the 1960s and was previously expanded in 1988. The property is generally flat lying, and its underlain soils are comprised of the Whitney Sandy Loam, Montpelier Coarse Sandy Loam, and Madera Sandy Loams. # WASTE GENERATION AND WASTE MANAGEMENT AT FACILITY Wastewater produced at the facility consists of residual egg yolk, washwater, cleaning agents and disinfectants. Solid wastes are also produced at the facility and primarily consist of broken shells, feather down, poultry carcasses and debris. All solids are separated and exported offsite to the Foster Farms Fertilizer Plant. Wastewater from the hatchery is currently directed to a concrete lined pond and an unlined wastewater storage lagoon. After the expansion, wastewater from the hatchery will flow via floor drains and gravity pipelines to a sump and then pumped to a screen where the solids will be separated out. The wastewater will then be directed by gravity pipelines into one of two synthetically lined wastewater storage lagoons. The concrete lined pond will be taken out of operation following the expansion. The two wastewater storage lagoons will be constructed with a single layer 60-mil synthetic liner, which will meet the Tier 2 criteria laid out in Waste Discharge Requirements General Order for Existing Milk Cow Dairies Order No. R5-2007-0035. Storm water from the production area is diverted away from the wastewater storage lagoons and instead, will be routed to an existing decorative pond north of the facility. An estimated 27,284 gallons per day (gpd) of clean water from the on-site supply wells is currently used to wash the incubator areas and hatch baskets. Following the expansion, the Discharger anticipates average daily flows to range between 22,000 gpd to 38,500 gpd, with an expected range of 31,000 to 38,500 gpd on washdays. Washdays occur approximately 4 to 5 days per week. Over a 31 day storage period, the volume of wastewater generated will be up to 1,193,500 gallons. The rainfall calculations used are based on a 100-year wet season using the local climate. The 100-year wet season is more conservative than using a 25-year, 24-hour storm event. The average annual precipitation for the area is 11.63 inches. The 100-year wet season precipitation is 22.29 inches. Rainfall onto the wastewater storage lagoons is estimated at 179,218 gallons over the storage period and using the 100-year wet season figures. The total amount of wastewater requiring storage over the 31-day maximum storage period, after removing losses due to evaporation and adding in the 100-year wet season, is 1,359,684 gallons. The facility's two new wastewater storage lagoons will have dimensions of approximately 203.5 feet long by 123.5 feet wide, and a side slope of 3:1. The total storage capacity of both wastewater storage lagoons will be 6.06 acre-feet (1,974,660 gallons) plus an additional 1.94 acre-feet (632,152 gallons) of freeboard volume for a total of 8 acre-feet (2,606,811 gallons) of storage. ### LAND APPLICATION OF WASTEWATER TO CROPS There are 120 total acres associated with the Ellenwood Chicken Hatchery. Land under agricultural production at the facility consists of approximately 84 acres. Of the cropland, 7.6 acres is currently pasture but will be planted with winter forage and sudan grass, and 76 acres are cropped in almonds. Wastewater is applied to the cropland and almond orchard in conjunction with fresh water and applied at an agronomic rate in accordance with the limitations of this Order and in compliance with the certified Nutrient Management Plan. In addition, the cropland is surrounded by a road berm. The almond orchard does not have a berm; however, it only receives on average 0.88 inches of wastewater per year over a four-month period. The Order requires that wastewater samples be collected and analyzed, and the volume of wastewater applied to each field determined. This information will be used to refine the Nutrient Management Plan on an ongoing basis. The dates and volume of each irrigation application (without wastewater) are recorded. These data are used to ensure that wastewater is not applied when the ground is at or above field moisture capacity, and to limit the flushing of nutrients below the root zone due to excessive application of irrigation water. In addition, samples of the irrigation water are tested to determine if there are nitrogen compounds present in the groundwater such that the Nutrient Management Plan should be amended to reflect nitrogen added from the irrigation water. Soil monitoring and plant tissue monitoring are also required and the results used to further refine the Nutrient Management Plan. ### GROUND WATER AND SURFACE WATER MONITORING PROVISIONS There are two existing agricultural supply wells and two domestic wells on the property. Five monitoring wells will be installed as required under this Order. The groundwater monitoring network will be used to determine groundwater flow direction, upgradient groundwater quality (unaffected by dairy operations) and groundwater quality downgradient of the location of land application areas and the wastewater storage lagoons. Groundwater samples were collected at the facility from the primary supply well on 7, 8, and 11 May 2009. Regional ground water flow appears to be to the west toward the San Joaquin River. Gradient will be verified through the groundwater monitoring well installation process. The depth to groundwater at the facility ranged from 66 to 72 feet below ground surface in June 2009. In May 2009, nitrate as N was on average 3.9 mg/L during the sampling period. Electrical conductivity was on average 329 uS/cm during the sampling period. Sodium was 16 mg/L and chloride was 16 mg/L on average during the sampling period. No water quality goals were exceeded during the sampling period. Page 4 of 11 The domestic and agricultural wells at the facility will be sampled semiannually at time of expected highest and lowest water table levels for electrical conductivity, nitrate-nitrogen, total nitrogen, and total fixed solids, and annually for general minerals, ammonia-nitrogen, total dissolved solids, and fecal coliform. For the first two years, the monitoring wells will be sampled quarterly for electrical conductivity, nitrate-nitrogen, and total dissolved solids, and semiannually for pH, ammonium-nitrogen, fecal coliform, phosphorous, and potassium. For the first two years, they will be sampled quarterly for general minerals, then annually thereafter. Prior to any pre-sample purging, the depth of groundwater shall be measured from a surveyed reference point (anticipated to be the top of each well vault) to the nearest 0.01 foot in each well. Because the cropland at the facility is surrounded by a road berm and the almond orchard received a very limited amount of wastewater, it is not anticipated that there will be off-property discharges of waste, which would be in violation of the Water Code. It is expected that, if the Nutrient Management Plan and other conditions of the Order regarding waste application are followed, any discharges of storm water from fields receiving wastewater should not contain significant quantities of waste constituents. To verify this, representative samples will be collected from a portion of the fields each year to determine if waste constituents are present. Storm water monitoring will be adjusted based on the results from these samples. ### REPORTING REQUIREMENTS By January 15 of each year, the Discharger will submit an Annual Report containing the information on facility operations outlined in the Monitoring and Reporting program and covering the period from 1 November through 31 October of the previous year. The initial annual report will cover the period through 31 October 2011. By 30 June 2011, and annually thereafter, the Discharger will submit the results of groundwater monitoring and storm water monitoring conducted pursuant to the Monitoring and Reporting Program. In the event of any noncompliance with the requirements of the Order that endangers human health or the environment, or any noncompliance with the prohibitions in the Order as listed in the Noncompliance Reporting provisions of the Monitoring and Reporting Program, the Discharger shall notify the Board within 24 hours of becoming aware of the occurrence. Information about the situation shall be collected and submitted in accordance with the Priority Reporting of Significant Events requirements in the Monitoring and Reporting Program. #### APPLICABLE WATER QUALITY STANDARDS The Central Valley Water Board has adopted a Water Quality Control Plan (Basin Plan) for the Sacramento River and San Joaquin River Basins (4th ed.). This Basin Plan designates the beneficial uses of groundwater and surface waters of the Region, specifies water quality objectives to protect those uses, and includes implementation programs for achieving water quality objectives. The Basin Plan also includes plans and policies of the State Water Board incorporated by reference, including State Water Board Resolution No. 68-16 (*Statement of Policy with Respect to Maintaining High Quality Waters in California*), State Water Board Resolution 88-63 (*Sources of Drinking Water Policy*), and State Water Board Resolution No. 92-49 (*Policies and Procedures for Investigation and Cleanup or Abatement of Discharges Under Water Code Section 13304*). ### Beneficial Uses of Surface Water and Groundwater Pursuant to Chapter II of the Basin Plan, the beneficial uses of surface water may include: municipal and domestic supply; agricultural supply; agricultural stock watering; industrial process supply; industrial service supply; hydro-power generation; body contact water recreation; canoeing and rafting; other non-body contact water recreation; warm freshwater aquatic habitat; cold freshwater aquatic habitat; warm fish migration habitat; cold fish migration habitat; warm spawning habitat; cold spawning habitat; wildlife habitat; navigation; rare, threatened, and endangered species; groundwater recharge; freshwater replenishment; aquaculture; and preservation of biological habitats of special significance. The Basin Plan contains a Table that lists the surface water bodies and the beneficial uses and where not listed, the Basin Plan designates beneficial uses based on the waters to which they are tributary or applicable state or federal requirements. These beneficial uses are protected in this Order by, among other requirements, the prohibition of a direct or indirect discharge of waste and/or storm water from the production area to surface waters, the prohibition of discharge of wastewater to surface waters from cropland, the prohibition of any discharge of storm water to surface water from the land application areas unless the land application area has been managed consistent with a certified Nutrient Management Plan, and the prohibition of discharge of waste from existing milk cow dairies to surface waters which causes or contributes to an exceedance of any applicable water quality objective in the Basin Plan or any applicable state or federal water quality criteria, or a violation of any applicable state or federal policies or regulations. Chapter II of the Sacramento River and San Joaquin River Basin Plan states: "Unless otherwise designated by the Regional Water Board, all groundwaters in the Region are considered as suitable or potentially suitable, at a minimum, for municipal and domestic water supply, agricultural supply, industrial service supply, and industrial process supply." These beneficial uses are protected in this Order by, among other requirements, the specification that the discharge of waste at an existing milk cow dairy shall not cause a violation of water quality objectives or cause pollution or nuisance. ## Water Quality Objectives Pursuant to the California Water Code Section 13263(a), WDRs must implement the Basin Plans, which require consideration of the beneficial uses of water, water quality objectives reasonably required to protect the beneficial uses, other waste discharges, the need to prevent nuisance conditions in the disposal area, and the receiving water. The water quality objectives are implemented in WDRs consistent with the Basin Plan's *Policy for Application of Water Quality Objectives*. The Basin Plan requires that WDRs apply the most stringent objective for each constituent to ensure that discharges do not cause adverse affects to any beneficial use. Water quality objectives are the limits or levels of water quality constituents or characteristics that are established for the reasonable protection of beneficial uses of water or the prevention of nuisance within a specific area. Water quality objectives apply to all waters within a surface water or groundwater resource for which beneficial uses have been designated. Water quality objectives are listed separately for surface water and groundwater in Chapter III of the Basin Plan and are either numeric or narrative. The primary waste constituents of concern due to discharges of waste from poultry facilities are ammonia, nitrates, phosphorus, chloride, boron, salts, pathogens, and organic matter. The discharge of waste from poultry facilities must not cause surface water or groundwater to exceed the applicable water quality objectives for those constituents. Water Quality Objectives and Federal Criteria for Surface Water¹ Water quality objectives that apply to surface water include, but are not limited to, (1) the numeric objectives, including the bacteria objective, the chemical constituents objective (includes listed chemicals and state drinking water standards, i.e., maximum contaminant levels (MCLs) promulgated in Title 22 CCR Division 4, Chapter 15 Sections 64431 and 64444 that are applicable through the Basin Plan to waters designated as municipal and domestic supply), dissolved oxygen objectives, pH objectives, and the salinity objectives; and (2) the narrative objectives, including the biostimulatory substances objective, the chemical constituents objective, and the toxicity objective. The Basin Plan also contains numeric water quality objectives that apply to specifically identified ¹ It is important to note that this Order prohibits the direct or indirect discharge of waste and/or storm water from the production area to surface waters, the discharge of wastewater to surface waters from cropland, and requires the monitoring of discharges of storm water to surface water from the land application areas where or process wastewater has been applied as well as implementation of a certified Nutrient Management Plan. water bodies, including for example, electrical conductivity objectives for the Delta. Federal water quality criteria that apply to surface water are contained in federal regulations referred to as the California Toxics Rule and the National Toxics Rule. See 40 CFR Sections 131.36 and 131.38. ## Water Quality Objectives for Groundwater Water quality objectives that apply to groundwater include, but are not limited to, (1) numeric objectives, including the bacteria objective and the chemical constituents objective (includes state MCLs promulgated in Title 22 CCR Division 4, Chapter 15 Section 64431 and 64444 and are applicable through the Basin Plan to municipal and domestic supply), and (2) narrative objectives including the chemical constituents, taste and odor, and toxicity objectives. # Implementation of Water Quality Objectives The Basin Plan includes an implementation program for water quality objectives called the *Policy for Application of Water Quality Objectives*, which applies to implementation of both numeric and narrative water quality objectives. To evaluate compliance with narrative objectives, the Policy requires the Regional Board to consider, on a case-by-case basis, various factors and information, including direct evidence of beneficial use impacts (e.g., a fish kill), information submitted by the discharger and other interested parties (e.g., levels that constitute natural background or site-specific conditions, such as soil types), and "relevant numerical criteria and guidelines developed and/or published by other agencies and organizations", such as the State Water Resources Control Board, California Department of Health Services, Department of Fish and Game, and the United States Environmental Protection Agency (USEPA). The Policy requires the Regional Board to consider this information and determine what specific numerical limit is "relevant and appropriate" to the situation at hand, and, therefore should be used in determining compliance with the narrative objective. ### Narrative Water Quality Objectives Some of the considerations of relevant numerical criteria and guidelines developed or published by other agencies and organizations include: #### *Agriculture* The Basin Plan contains a narrative chemical constituents objective for both groundwater and surface water that states that "[waters] shall not contain chemical constituents in concentrations that adversely affect beneficial uses." This objective applies to the protection of agricultural beneficial uses. Relevant numerical criteria and guidelines for agricultural uses of groundwater are included in publications from the National Academy of Sciences, the University of California Cooperative Extension, and the Food and Agricultural Organization of the United Nations. This information is summarized in a 1985 publication Water Quality for Agriculture, Food and Agriculture Organization of the United Nations - *Irrigation and Drainage Paper No. 29*, (hereafter U.N. Guidelines) and includes detailed information to evaluate the quality of irrigation water necessary to sustain various crops. The major constituents used to assess the quality of water for beneficial uses of irrigated agriculture are salinity (expressed as total dissolved solids, or TDS), boron, chloride, and sodium. Salinity reduces crop growth by reducing the ability of plant roots to absorb water. Boron is an essential element in very low concentrations but can become toxic to plants when concentrations in water even slightly exceed the amount required for optimal growth. While boron sensitivity appears to affect a wide variety of crops, sodium and chloride toxicities are mostly limited to tree crops and woody perennials (e.g., citrus, stone-fruit, and vineyard). A predominance of sodium relative to other ions in irrigation water may also disperse soil aggregates, which in turn, affects virtually all crops by decreasing the permeability of the soil to water and air. Nitrogen in the form of nitrate and ammonium can also affect some nitrogen sensitive crops such as sugar beets, grapes, apricots, citrus, avocado, and some grain crops. Production of nitrogen sensitive crops may be affected at nitrogen concentrations above 5 mg/L nitrate (as nitrogen) or ammonium-nitrogen. The U.N. Guidelines conclude that salt tolerance of crops and yield reductions can vary depending on various factors, such as irrigation management, the crop being grown, and the site conditions. The U.N. Guidelines recommend that a site-specific assessment be conducted to determine if water quality above or below the U.N. Guidelines would provide protection of irrigated agricultural uses. The U.N. Guidelines divide water quality characteristics as having "No Problem – Increasing Problems – Severe Problems" and show numerical criteria that protect a full range of crops and would likely be protective under all irrigated agricultural uses. The numerical criteria for agricultural irrigation use are: Page 9 of 11 | Problem and Related Constituent Salinity of irrigation water (micromhos per centimeter (µmhos/cm)) Salinity of irrigation water (total dissolved solids (mg/L)) | <u>No Problem</u> < 700 < 450 | Problems
700 –
3,000
450 –
2,000 | |---|-------------------------------|--| | Specific Ion Toxicity | | | | From ROOT absorption | | | | Sodium (mg/L) | < 69 | 69 - 207 | | Chloride (mg/L) | < 142 | 142 - 355 | | Boron (mg/L) | < 0.7 | 0.7 - 3.0 | | From FOLIAR absorption | | | | Sodium (mg/L) | < 69 | > 69 | | Chloride (mg/L) | < 106 | > 106 | | Miscellaneous | | | | NH ₄ -N (mg/L) (for sensitive crops) | < 5 | 5 - 30 | | NO ₃ -N (mg/L) (for sensitive crops) | < 5 | 5 - 30 | | HCO ₃ (mg/L) (only with overhead sprinklers) | < 90 | 90 - 520 | | рН | normal range = | 6.5 - 8.4 | | | | | In determining the concentrations of the constituents listed above that will not result in adverse affects on agricultural beneficial uses in a given area, multiple criteria can apply. While the most stringent concentration becomes the constraining criterion, it is not necessarily the concentration that is required to protect all crops typically grown in the area. The U.N. Guidelines reflect the highest tolerable level of quality necessary to sustain the most sensitive crops but those crops may or may not be grown in the area. An evaluation of the existing crops grown in an area and crops that could be grown in that area is necessary to determine what the most stringent water quality criteria are that will protect all beneficial uses of water in that area. The highest water quality that is reasonable must be maintained. # Animal Drinking Water As shown in the U.N. Guidelines, water quality needed to protect dairy animal drinking water uses are less sensitive than irrigated agriculture for all constituents shown above. # Municipal and Domestic Supply With respect to water quality needed to protect municipal and domestic supply, the Basin Plan contains the narrative taste or odor objective that state in summary that waters shall not contain taste- or odor-producing substances in concentrations that cause nuisance, adversely affects any beneficial use, or impart undesirable tastes or odors in fish flesh or other edible products. Waste from a dairy contains organic nitrogen, a decomposition by-product of which is ammonia, a taste-producing substance that, if present in excessive concentrations, can adversely affect the beneficial use of groundwater for municipal and domestic supply. J.E. Amoore and E. Hautala have determined an odor threshold for ammonia-nitrogen of 1.5 mg/L (*Odor as an Aid to Chemical Safety: Odor Thresholds Compared with Threshold Limit Values and Volatilities for 214 Industrial Chemicals in Air and Water Dilution*, Journal of Applied Toxicology, Vol. 3, No. 6 (1983)). While this numeric level is a value that is to be met at the point of use (i.e., the tap, rather than the receiving water), the Basin Plans state that "[w]ater quality objectives apply to all waters within a surface water or ground water resource for which beneficial uses have been designated, rather than at an intake, wellhead or other point of consumption." In accordance with the *Policy on Application of Water Quality Objectives*, it is relevant, appropriate, and reasonable to use this numeric level of 1.5 mg/L ammonianitrogen to protect beneficial use of area groundwaters and surface waters for human consumption. # Aquatic Life Ammonia is known to cause toxicity to aquatic organisms in surface waters. Waste from a dairy contains both ammonia and un-ionized ammonia, both of which can cause impact to aquatic life. The US EPA has established Ambient Water Quality Criteria for Ammonia for the protection of freshwater aquatic life. These criteria include an acute criterion (1-hour average) for total ammonia (including ionized and un-ionized ammonia) that is dependent on pH and fish species and a chronic criterion (30-day average) that is dependent on pH and temperature, and at temperatures less than 15 degrees centigrade (59° F) is also dependent on fish species. For freshwater aquatic life protection, the acute criterion for total ammonia-nitrogen ranges from 0.885 (at pH 9.0) to 32.6 (at pH 6.5) milligrams nitrogen per liter (mg N/L) when salmonids are present and from 1.32 (at pH 9.0) to 48.4 (at pH 6.5) mg N/L when salmonids are absent. The chronic criterion for total ammonia-nitrogen ranges from 0.179 (at pH 9.0) to 10.8 (at pH 6.5). These criteria are based on total (un-ionized plus ionized) ammonia. The California Department of Fish and Game criteria to protect freshwater aquatic life is 0.02 mg/L un-ionized ammonia. The equilibrium between unionized and ionized ammonia is controlled by temperature and pH. The California Department of Fish and Game determines the concentration of unionized ammonia based on the known percentage of un-ionized ammonia in a concentration of total ammonia at a given temperature and pH. ### Numeric Water Quality Objectives Maximum Contaminant Levels (Drinking Water Standards) The Basin Plan's incorporation of MCLs by reference is prospective to incorporate changes to MCLs as changes in Title 22 CCR take effect. Should a change occur to an MCL and that MCL thereby becomes the most or more stringent objective, implementation of the changed objective would be effected through reopening of this Order. ### Water Quality Objectives for Bacteria Hatchery eggs can contain pathogenic bacteria which can impact water quality if not properly handled. The Basin Plan contains numeric water quality objectives for bacteria in surface waters and in groundwater. For surface water, the Basin Plan specifies that "[i]n waters designated for contact recreation (REC-1), the fecal coliform concentration based on a minimum of not less than five samples for any 30-day period shall not exceed a geometric mean of 200/100 ml, nor shall more than ten percent of the total number of samples taken during any 30-day period exceed 400/100 ml." For groundwater, the Basin Plan specifies that "[i]n ground waters used for domestic or municipal supply the most probable number of coliform organisms over any seven-day period shall be less than 2.2/100 ml." # Receiving Water Limitations for Poultry Facilities The numeric water quality objectives and numeric limits that are relevant and appropriate to implement narrative water quality objectives applicable to the primary waste constituents of concern in discharges of waste at poultry facilities that could affect groundwater and surface water are as follows: For groundwater. the most stringent limitations to implement narrative and numeric water quality objectives are for total coliform 2.2/100 milliliter (ml), for ammonia-nitrogen 1.5 mg/L, for boron 0.7 mg/L, for chloride 106 mg/L, for nitrate-nitrogen 5 mg/L, for EC 700 µmhos/cm, and for TDS 450 mg/L. For surface water, the most stringent limitations to implement narrative and numeric water quality objectives and criteria are for total coliform 2.2/100 ml, for chloride 106 mg/L, for nitratenitrogen 5 mg/L, for EC 700 umhos/cm, and for TDS 450 mg/L. For surface water, the appropriate limitation for ammonia is 0.02 mg/L un-ionized ammonia or a concentration of total ammonia determined by the pH and fish species, whichever is less. Less stringent limitations may apply to different areas but can only be determined through a site-specific assessment. The Discharger may propose the application of less stringent limitations for consideration in the Monitoring and Reporting Program. Poultry waste may include other waste constituents not mentioned here. This Order requires the discharge to comply with all water quality objectives and federal water quality critiera for surface waters applicable to the discharge.